Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices
نویسندگان
چکیده
منابع مشابه
Data-driven models for monthly streamflow time series prediction
C. L. Wu and K. W. Chau* 2 Dept. of Civil and Structural Engineering, Hong Kong Polytechnic University, 3 Hung Hom, Kowloon, Hong Kong, People’s Republic of China 4 5 *Email: [email protected] 6 ABSTRACT 7 Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 Artificial Neural Networks (ANN), are widely applied to hydrologic time series predi...
متن کاملInvestigation and Prediction of Iranian Drought Using Composite Indices
In recent years, Iran in Southwest Asia it has been affected by drought. The purpose of the present study is to analyze and forecast drought in Iran. For this research at first, the precipitation and temperature climatic parameters over a 29 year period (1990- 2018) at 30 stations in Iran Collected. For modeling, the M.S.S fuzzy index, at first uses three indices (SET, SPI, MCZI) using fuzzy lo...
متن کاملStreamflow droughts assessment in Kurdistan Province, Iran
In this paper, we analyzed the streamflow droughts based on the Percent of Normal Index (PNI) and clustering approaches in the Kurdistan Province, Iran, over the 1981-2010. The Kolmogorov-Smirnov (K-S) test was considered for streamflow time series and the results of K-S test indicated that streamflow time series did follow the normal distribution at the 0.05 significance level. Generally, the ...
متن کاملHydrometeorological and vegetation indices for the drought monitoring system in Tuscany Region, Italy
We present here the first experiments for an integrated system that is under development for drought monitoring and water resources assessment in Tuscany Region in central Italy. The system is based on the cross-evaluation of the Standardized Precipitation Index (SPI), Vegetation Indices from remote sensing (from MODIS and SEVIRIMSG), and outputs from the distributed hydrological model MOBIDIC,...
متن کاملUncertainty Analysis of Monthly Streamflow Forecasting
Streamflow forecasting is an important factor in water resources planning and management. In this study Feed Forward Artificial Neural Network (FFANN) was used for monthly streamflow forecasting. Three scenarios were considered for modeling. Principal Component Analysis (PCA) is used for reducing the model architecture complexity and input data reduction. Twelve statistical criteria were used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hydrology and Earth System Sciences
سال: 2013
ISSN: 1607-7938
DOI: 10.5194/hess-17-395-2013